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Abstract

Several models for optimizing incomplete sample designs with

respect to information on the item parameters are presented.

The following cases are considered: (1) known ability

parameters; (2) unknown ability parameters; (3) item sets

with multiple ability scales; and (4) response models with

multiple item parameters. The models are able to cope with

hierarchical structures in the population of examinees as

well as the domain of content, and allow for practical

constraints with respect to, e.g., test content, curricular

differences between groups, or time available for item

administration. An example with test data from a national

assessment study illustrates the use of the models.

Keywords- Item Response Theory. Maximumlikelihood Estima

tion; Incomplete Sample;, Optimal Experiment; Linear

Programming



Optimizing fncomplete Sample Designs

3

Optimizing Incomplete Sample Designs for Estimating

Item Response Model Parameters

It is well known in item response theory that the accuracy of

the maximumlikelihood estimators of the item parameters

depends on the abilities of the examinees in the sample. This

fact can easily be demonstrated for the Rasch model. Suppose

item i = 1, I can be characterized by a scalar parameter

Si representing its difficulty, whereas the scalar parameter

Oj measures the ability of examinee j = 1, J to solve

the items. For stochastic responses Aij E (0, 1). the model

gives the probability of event (Aij = 1) as

(1) P(Aij = 1) = (1 + exp(8i 0j)) -1.

with 00 < Si, Oi < +. (Pasch, 1980). If j = 1, J and

independent responses from all the examinees are used to

estimate Si,, then for J -4 00 the asymptotic variance of the

maximumlikelihood estimator is equal to the reciprocal of

Fisher's information measure

(2) I(81;01 0j) = Ejj=i pi(ei)(1 Wei)) 1.

where pi(0j) m P(Aij = 1).

Obviously,

7
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(3) max I(6i;01 . ej) = 1(61;011.0j,
01 ..... °J

with

01 . Si,j 1

4

J = 1, ..., J.

Thus, from the point of view of designing a sample for

estimating a single item parameter, the case of all examinee

parameters equal to the (unknown) item parameter would be

ideal.

A slightly more complicated problem is the one of

designing an optimal sample for the simultaneous estimation

of I iten parameters with possibly different values. Then for

each item parameter each examinee has a different

contribution to the information in the sample. A moment's

reflection reveals that now the optimal distribution of

examinees in the sample is a function of the desired

distribution of information over the item parameters. Hence,

this distribution has to he specified before the sample can

he designed. The following model gives a solution to the

problem. Let ri be the relative amount of information about

item parameter Si wanted from the sample. Let xk be the

unknown sample-frequency of examinees with parameter value

Ok, k = 1, .... K, where the grouping of examinees can be

made arbitrarily fine. Finally, suppose the response

variables Aid of different examinees are independent. Then,

because of the additivity of Fisher's measure, the optimal

C)
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distribution of examinees is the value of (xl,

solving the following integer programming problem:

(4) maximize Ek=1 I(8i0:0k)xk

subject to

(5)
vK

rIl 4=1 I(81:0k)xk = = ri
1

'-k=1
I(8I:Ok)xk.

(6) xk = 3,

5

xk)

(7) xk = 0, 1, ..., k = 1, ..., K.

The idea underlying this formalization is to maximize the

information for an arbitrary item io under the condition that

the distribution of information over all item parameters must

be proportional to (r1, rI). As a consequence, t'le

distribution of the J examinees is chosen such that the

relative distribution of information as specified by (r1,

rI) is "blown up as far as possible". Algorithms for

solving (4) to (7) can be found in the integer programming

literature (e.g., Wagner, 1975, chap. 13) and are amply

available in computer code.

The above problem was given only as a theoretical

exercise; in practice, the item parameters are unknown, and

for finite values of I an exact solution to the equality

constraint in (5) is unlikely to exist. However, before
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giving a practical solution based on the same idea, it is

observed that the problem is complicated somewhat further if

the assumption that each examinee gets the same set of items

should be abandoned. Such incomplete samples occur in

situations where the number of items is too large to

administer all items to each examinee, for example, when

large item banks or sets of parallel tests have to be

constructed.

It is the purpose of the present paper to give some

optimization models for incomplete sample designs. For these

models to be practical, it is necessary that, unlike the

above example, the item parameters need not be known

beforehand Several cases are considered. In the first case,

the assumption of known item parameter values is dropped. The

primary goal of presenting this case is to introduce the

methodology and to show how it applies to the present

problem. In the next case the assumption of known values for

the ability parameters is dropped as well. The results are

then generalized: first to the case of multiple ability

scales and next to the case of models with multiple item

parameters. An illustrative example concludes the paper.

Following the practice of survey sampling (Cassel, Sarndal, &

Wretman, 197;), a distinction between stochastic and

deterministic designs is made. All results are formulated as

linear programming models. Linear programming was applied

earlier in test ',heory to the problem of test construction:

first by Theunissen (1985), and subsequently by Adema (1988),

BoekkooiTimminga (1987), Theunissen (1986). Theunissen and

10
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Verstralen (1986), van der Linden (1987), van der Liuden and

Adema (1988), and van der Linden and BoekkooiTimminga (1988,

in press). A sequential solution to the problem of sample

optimization not based on a linear programming approach is

given in van der Linden and Eggen (1986).

General Shape of the Sample

Mostly, the design of the sample for calibrating a large item

bank has to meet several conditions. The following types of

conditions can be distinguished.

First, the domain of content for which the items are

constructed may have a structure of problems nested in

topics. The topics, in turn, may display a hierarchical

structure of specific topics nested in broader ones. Also,

different groups of topics usually require different

abilities to solve the problems. Although the classification

of items into topics is only a mattex of judgment by experts,

the ability structure enters the design as an empirical

hypothesis to be tested on response data.

Second, the population of examinees usually also has a

hierarchical structure, with examinees nested in classes,

schools, districts, and so on. In addition, social or

geographical factors may play a role. In the practice of item

calibration, groupbased designs are common. They reduce the

logistic efforts involved in administering the items and

leave units like school classes intact.

11
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Third, various practical conditions may exist, for

example, with respect to the composition of the tests,

curricular differences between schools, or the time available

for item administration. In order to avoid the problem of

nonresponse, the sample should be designed to meet such

conditions as well.

The general shape of the sample considered in the paper

is given in Figure 1. The examinees in the operational

Insert Figure 1 about here

population are denoted by j = 1, ..., J. Each examinee is

nested in one of the groups g = 1, ..., G. The ability scales

are denoted by s = 1, S. where scale s consists of

topics t = 1, Ts and topic t contains item i = 1,

It. Additional levels of groups and topics can easily be

introduced by further partitioning the examinees and the

items, but are ommitted here for convenience. The design

variables x..t S and x-J1 yitS represent the decision on examinee

j and group g with regard to item (i,t,$). Two possible types

of designs are considered: (1) Stochastic designs, where the

variables are probabilities of assigning items to examinees

(or groups). The problem is to optimise the probabilities;

once they are known, auxiliary experiments can be used to

decide on the actual administration of the items. Sampling

with a stochastic design is common in survey research

12
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(Cassel, Sdrndal, & Wretman, 1977), but has remained

unnoticed in IRT: (2) Deterministic designs, where the

variables take only the vales one or zero, indicating whether

or not the item is administered to tte examinee or the group.

The strategy in the following part of the paper is to

start with the simple case of one scale and one topic and

then to generalize to the more complete case in Figure 1.

Although the models are formulated either for examinees or

groups as sampling units, they can easily be transformed to

the other level.

Unknown Item Difficulties and Known Abilities

Suppose we have at our disposal J examinees with known values

for their ability parameters. Such cases are not frequently

met in practice, but may arise in a twostage testing

strategy where a short pretest is used to optimally assic-,

items to examinees in the second stage.

Since the values of the item parameters are unknown, a

target for the information in the sample over the scale of

possible values of the parameter has to be given. For a fixed

parameterization, let Sil Sid. ..., Sip be the possible

values of parameter Si for which the target is specified (the

number of points can be made arbitrarily large). Two types of

models are presented each based on a different target: (1) A

relative target, denoted by a vector of nonnegative numbers

Pil. .... pip. These prespecified numbers indicate the

information the sample should have on item parameter Si if it

13
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would take one of the values of Su, ..., Sip relative to the

others; (2) An absolute target ail, ..., aip specifying on a

fixed scale the actual amount of information the sample

should have for each of the values Su, ..., Sip. The former

only specifies the shape of the distribution of information

(e._ uniform, skewed to the left, etc.); the latter also

specifies its size. The relative target is used in the

following model (cf. van der Linden, 1986).

Model of Maximal Information

It is assumed that the sample size is fixed and that the

objective is to maximize the information in the sample such

that the shape of the target distribution is realized

maximizing its size. Formally, this can be achieved by

replacing (pil .... pip) by the vector of products (pint,

PiDY). where y is a scale factor to be maximized.

The model is:

(8) maximize y

subject to

(9) Ej=1 I(Zoid:Oi)xji PidY ?: 0. i = 1, ..., I,

d = 1. D;

(10) II=1 xji 5 nj. j = 1. J:

1 4
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(11) 0 5 xji 5 1, i = 1, ..., I,

j = 1, J;

(12) y O.

In (8). y is maximized so that the lower bounds to D!
J=1

I(Sid;Opxji in (9) are maximal while still obeying the

ratio's specified by (pil, ..., pip) The length of the test

for examinee j is restricted to nj in (10), and the

constraints in (11) specify a design with stochastic

variables. The model is linear in the design variables and

can be solved by the simplex algorithm (e.g., Wagner, 1975,,

chap. 4). Also, for any set of constants pid 0 and nj 0 a

feasible solution exists. This property has been achieved by

replacing the equality constraints in (5) by the inequalities

in (9). Further, because the lower bounds in (9) are

maximized, the solution hardly exceeds these bounds.

Therefore, in practice, (9) works as an equality constraint.

For the same reason, the expected test length will reach the

upper bound in (10).

It should be noted that the constants Pid and nj allow

specification of the results at the level of individual items

and examinees. This is the most general formulation of the

model. However, in practice the target for the information in

the sample will be the same for all items, whereas the

required test length will be the same for groups of

examinees. This reduces the number of coefficients to be

specified in the model.

1 5
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Unknown Item Difficulties and Unknown Abilities

Suppose now the values of the ability parameters are not

known. In such cases, however, some kind of prior knowledge

about the distribution of the abilities in groups of

examinees may be available. For example, if a new item bank

has to be calibrated, norms for the old bank may be known;

or, perhaps, in a national assessment study of educational

achievements results from a previous study could be used

Such information can be exploited to optimize the

sample, provided one of the old items is added to the sample

to equate the scale for the new items to the old one.

Although the following models are formulated for empirical

priors at group level, the same type of models can be

formulated for subjective priors at the level of individual

examinees if one is ready to accept the assumption of

exchangeability of examinees.

Model of Maximal Expected Information

Let r (A) be the prior distribution for the population from

which group g can be sampled with size N The expected

information on item parameter 8 in group g is equal to

(13) Eg[I(Sid:0)] = Ng fi(Sid;0)drg(0).

1 6
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The model of maximal expected information follows on

substituting (13) for I(Sid;0) in (8) through (12), replacing

the design variables xji by xgi.

Model of Minimal Sample Size

If the objective is not to maximize the expected information,

but to minimize the sample size for an absolute target,

additional decision variables are needed to include group g

in the sample:

1 group g in the sample
(14) zg a

0 otherwise g = 1, ..., G.

The model iF as follows:

(15) minimize

subject to

zg

(16) 4,1 Eg(I(Sid:0)]xgi > aid,

(17)
(1

ng ag 11 Xgi 5 0,

(18) EI=1 Xgi - 11V)Zg 0,

1 7

i = 1, .., I,

d = 1, ..., D:

g = 1, G;

g= 1, ...,



(19) zg, xgi e (0, 1},
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i = 1, ..., I,

g = 1, ..., G.

The objective function in (15) minimizes the number of

groups, while (16) guarantees that the information in the

sample is not below target. The latter also implies that each

item is assigned to at least one group. The constraints in

(17) and (18) serve a double goal: they set lower and

(upper bounds ng1) and n62) to the length of the test for group

g at the same time preventing the possibility of excluding g

from the sample while assigning items to it. Because the

objective is to minimize the sample size. for most groups

only the upper bound in (18) is effective. In (19),

deterministic design variables are specified. For this type

of variable, a branch-and-bound algorithm can be used to

solve the model (e.g., Wagner, 1975, chap. 13). Adema (1988)

gives a modified branch-and-bound procedure that solves

large-scale zero-one programming problems in realistic time.

If the design varLables are chosen to be stochastic, (17) and

(18) set lower and upper bounds to the expected test length.

(When specifying ng1) , it should hold, of course, that

=1 41) I. If this condition is satisfied, the model has

a feasible solution if the target is set not too high

relative to the maximum of 4=1 4g

1
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Multiple Ability Scales

The above models are also appropriate for the case of

multiple ability scales.

Suppose that S abilities are necessary to cover the

complete set of items, and that each item requires exactly

one of these abilities. Further, for each of the items in set

s = 1, S the response model in (1) holds, but separate

likelihoods are necessary to estimate the item parameters in

different sets. Let Is denote the set of indices of the items

in s, while ability Os is needed to solve an item in s.

The only thing necessary to apply the above models to

the case of multiple abilities is to take account of scale

differences between the item sets. For the case of known

abilities, the item parameter scales in the different sets of

items are automatically fixed by their ability scales. If

empirical priors are used, the scales of the item parameters

have to be equated to the tests from which the priors were

extracted. As already noted, this can be done by adding for

each set NI old item to the sample.

Suppose the interest is in the groupbased model for

maximal expected information, that is, in (8) through (12)

with (9) replaced by (13). It should be noted that for this

model, the effect of one numerical unit of the objective

function depends on the item parameter scales chosen. This

should be taken into account when specifying the targets for

the separate item sets relative to each other. Let pid,

d = 1, D, be the target for item i e Is, s = 1, S,

9
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and let rgs(0s) be the prior for ability Os in group g. The

model is now:

(20) maximize y

subject to

(21) 4=1 {Ng J I(Sid:Os)dFgs(es)l)xgi PidY 0,

i E IS.

S = 1, S,

d = 1, D;

(22)
-1 =1 xgi

5 ng, g= 1, ..., G:

(23) 0 < xgi .s 1, i = 1. ..., I,

S = 1. S.

g = 1. G;

(24) y O.

Multiple Item Parameters

So far, the Rasch model in (1) has been assumed to explain

the probabilities of correct item responses. However, the

only role it played was in the coefficients of constraints

like (9), (13), (16), or 01); the structure of the

optimization models was independent of the specific form of

20
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the IRT model. In fact, only the number of item parameters

counts, and the above models can be used for any one-

parameter IRT model. The question arises how these models

look like for IRT models with more than one item parameter.

For the sake of illustration, the two-parameter logistic

model is adopted:

(25) Pi(0j) = {1 + exp [ai(bi-9i)]} -1.

with < bi, ej < +00 and ai > 0, where ai and bi are the

discriminating power and difficulty of item i, respectively

(e.g., HaMbleton & Swaminathan, 1935. sect. 3.3.2; Lord,

1980). For Fisher's information measure, it follows from (25)

that

(26) I*(ni;e1 ej)

i:jj=1 (aPi(ei)/Dni)21Pi(ej)E1 -pi(8j)1)

ni = ai, bi.

The problem is to design the sample simultaneously with

respect to information on parameters ai and bi. How this can

be achieved by a simple reinterpretation of the above models

is shown for the model in (15) through (19).

Let ail, ..., aiv, aiv and bil, biw, biw

be the possible values of parameters ai and bi for which

absolute target values for the expected information are

21
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specified. As in (26), let gi run. over (ai, bi); also let p

run over (v, w). The model in (15) through (19) generalizes

to the case of two item parameters, if (16) is replaced by

(27) 4 Eg[I*(gip;O)ixgi aip, = 1, ..,. 1.

p = v, w,

v = 1. .... V.

w = 1. W.

The only difference is the doubling of the number of

constraints in (27) and a change of coefficients; the

structure of the model remains the same.

Again, it should be noted that the targets for different

parameters are set on different scales. If the difficulty

scale is fixed by known abilities or the use of a known prior

distribution, the scale of the discriminating power

parameters is also fixed, but with reciprocal unit.

From the above, the generalization to more than two item

parameters is obvious.

Practical Conditions on the Tests

As noted earlier, several practical conditions on the tests

for the various groups in the sample design may be in force.

Such conditions can be inserted in the optimization models

given here without destroying their properties, provided they

P2
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can be formulated as linear (in)equalities. Some examples are

given.

Test content. If for some groups of examinees the number

of items on topic t are not allowed to be larger than ngt,

constraints like (10) should be replaced by

(28) xgi 5 Ilgt, for some g and t.
iEIt

Because in the models for maximal information (28) is likely

to work as an equality constraint, the composition of the

.

test is fixed if Et=1 ngt = ng.

Curricular fit. Suppose different groups have

experienced different curricula with respect to the domain of

content covered by the test items. If topic t has not been

taught to group g, its items can be suppressed by setting ngt

= 0 in (28). In addition, it is possible to suppress

individual items by

(29) xgi = 0, for some i.

Test security. For reasons of test security it may be

desirable to prevent some items from administering to more

than v groups. This is achieved by the following linear

constraint:

(30) 4 xgi 5 v,

23

for some i.
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$imultaneous inclusion of croups. If groups with

different priors belong to the same organization and a model

of minimal sample size is chosen, it may be useful to make

the same decision about inclusion in the sample for these

groups:

(31) z = zg g for some (g, g').

However, the same effect can be obtained by replacing the

priors for such groups by mixtures.

The above constraints are only a small selection from

the possibilities. In principle, the same constraints may be

needed as when designing customized tests from a calibrated

item bank. A more complete treatment of the latter is given

in van der Linden and BoekkooiTimminga (in press).

Example

At the end of the seventies, the Dutch part of the Second

Mathematics Study of the International Association for the

Evaluation of Educational Achievement (IEA) was conducted.

For several subjects the mathematics achievements of grade

seven pupils were assessed and compared with results in other

countries. Suppose a third study has been planned and the

methodology in this paper has to be used to optimize the

sampling design for calibrating the test items As model for

the item responses, the Rasch model in (1) is chosen. Three

different subject areas are distinguished (Geometry, Algebra,

24
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and Arithmetic), and achievements in three different types of

secondary education are to be reported (LTE: Lower Technical

Education: DSE: Domestic Science Education; MGE: Middle

General Education).

For a sample of 400 examinees from the Second

Mathematics Study the Rasch model with a normal distribution

over the ability parameters was fitted to the data. The

results are given in Table 1. The numbers of items were equal

Insert Table 1 about here

to 10 (Geometry). 9 (Algebra), and 11 (Arithmetic). All

estimates of 4 and a were transformed to the same scale.

which was obtained by fitting the model to the total set of

items for the LTO examinees (p = .428).

The normal distributions in Table 1 were used as

empirical priors in the model of maximal expected information

in (8) through (13) with (9) replaced by (13). The sampling

plan used in this example is given in Table 2. Since no items

Insert Table 2 about here

were assumed to deserve a special treatment, the same uniform

target was set for all items (i.e.. pid = 1. i = 1. I.

25
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d = 1, D). The estimated difficulties of the previous

items varied between -.852 and 2.010; therefore, the target

was set at the points Si = -.50, 82 = +.50, and 63 = +1.50.

The design variables in the model were allowed to take values

between zero and one.

The model was solved using a standard computer program

for linear programming problems on a DEC2060 system (LANDO:

Anthonisse, 1984). The result, which is just an array of

numerical values for the 900 design variables, is not shown

here. For future reference, it is only noted that 831

variables were equal to zero or one whereas 69 variables took

values between zero and one. The CPU time needed was 28 mins.

and 27 secs. In addition, the value of the objective function

for the solution was obtained. It was equal to 71.228. Since

this is a lower bound to Fisher's information, it follows

that, uniformly in 6. an asymptotic standard error of

estimate not larger than (71.228)1/2=.118 can be expected.

Final Remarks

For the sample design in the above problem, the actual

assignment of items to examinees could take place using a

random experiment. However, other options are available.

First, the design variables in the model could be

replaced by zero-one variables. Since the number of variables

in the example generally is too large for a branch-and-bound

algorithm, a heuristic as in Adema (1988) could be used. The

heuristic is based on the principle that, for a maximization

26
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problem, the value of the objective function for a solution

with relaxed variables is an upper bound to the one for the

zeroone problem. Hence, as the final solution it accepts the

first feasible solution with an objective function value

differing no more than a small percentage 0.5%, say, from

the upper bound. The heuristic has proven to solve large

scale problems in realistic time (Adema,1988).

Second, for larger numbers of decision variables than in

the example, splitting a zeroone problem into smaller

problems for which a branchandbound algorithm could be used

is an attractive option. In the example, the design matrix

could be partitioned along its rows, computing an optimal

solution for subsets of groups. In this option, the model has

not to be adapted but for the range of the group index. If an

absolute target were to be used, targets of subproblems

should allow for possible differences in numbers c: subjects.

The final option for a model as in the example is

rounding the solution of the relaxed problem. It is known

that the number of decision variables in the solution with

noninteger values is not larger than the number of

constraints (Dantzig, 1957); in practice, it is considerably

smaller. The number of noninteger values in the example was

equal to 69. These values can be rounded optimally by a zero

one programming problem consisting of the previous problem

with the other variables fixed at their values in the

previous solution. The objective now is to approach the

information on the item parameters in the this solution as

close as possible.
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Table 1

Parameter estimates of the empirical priors for different

types of schools and subject areas.

Subject

Area

Parameter

.LTE

Type of School

.DSE .LGE

4 -.446 -1.263 .053

a .809 .665 .920
Geometry

P 1) .529 .577 .749

P
*2) .658 .237 .49S

4 .446 -.440 1.657

.700 .704 .950
Algebra

p .423 .670 .145

.056 .474 .871

4 -.147 -.690 .649

a .950 .512 .888
Arithmetic

p .344 .223 .256

p* .962 .666 .792

Notes: 1) probability of exceeding the result for the

likelihood-ratio test on the Rasch model; 2) idem for

assumption of normality.
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Table 2

Numbers of groups and items and group sizes in the sample.

Types of No. of Group Subject No. of

School Groups Size Area Items

LTE 4 32 Geometry 25

DSE 6 35 Algebra 15

MGE 5 28 Arithmetic 20

31



Optimizing Incomplete Sample Designs

28

Scale 1

Topic 1 t Ts

Item 1 i It

Group Examinee

1

1

G

J

xjits

xgits

Figure 1. General shape of a sample for estimating IRT

parameters
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